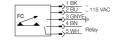

Flow monitoring Immersion sensor with integrated processor FCS-N1/2A4P-ARX-B1151/115VAC

Type designation	FCS-N1/2A4P-ARX-B1151/115VAC
Ident-No.	6871025
Ident-No (TUSA)	M6871025

Mounting insertion style sensor Water Operating Range 1...150cm/s Oil Operating Range 3...300 cm/s Stand-by time typ. 8 s (2...15 s) Switch-on time typ. 2 s (1...15 s) Switch-off time typ. 2 s (1...15 s) Temperature jump, response time max. 12 s ≤ 250 K/min Temperature gradient -20...80 °C


Medium temperature Operating voltage 98...132 VAC Output function Relay output, NO contact Rated operational current 2 A Short-circuit protection no 250 VAC AC switching voltage 60 VDC DC switching voltage Max. AC switching capacity 500 VA Max. DC switching capacity 50 W Protection class IP67

Housing material	Plastic, PBT
Sensor material	stainless steel, AISI 316Ti
Max. tightening torque housing nut	30 Nm
Electrical connection	Flange connector, 7/8"
Pressure resistance	100 bar
Process connection	NPT 1/8"
Switching state	LED chain green / yellow / red

Flow state display
Indication: Drop below setpoint
Indication: Setpoint reached
Indication: Setpoint exceeded
Indication: Setpoint exceeded
ILED yellow
Indication: Setpoint exceeded
ILED yellow

- Flow sensor for liquid media
- Calorimetric principle
- Adjustment via potentiometer
- LED band
- Flange connector: Mini-Brad Harrison
- AC 5-wire, 98...132 VAC
- NO contact, relay output
- Plug-in device, 7/8"

Wiring Diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid